direct product, metabelian, soluble, monomial, A-group
Aliases: S3×C24⋊C5, (S3×C24)⋊C5, (C23×C6)⋊C10, C24⋊4(C5×S3), C3⋊(C2×C24⋊C5), (C3×C24⋊C5)⋊3C2, SmallGroup(480,1196)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C23×C6 — C3×C24⋊C5 — S3×C24⋊C5 |
C23×C6 — S3×C24⋊C5 |
Subgroups: 1464 in 164 conjugacy classes, 9 normal (all characteristic)
C1, C2 [×7], C3, C22 [×31], C5, S3, S3 [×3], C6 [×3], C23 [×31], C10, D6 [×24], C2×C6 [×7], C15, C24, C24 [×6], C22×S3 [×28], C22×C6 [×3], C5×S3, C25, S3×C23 [×6], C23×C6, C24⋊C5, S3×C24, C2×C24⋊C5, C3×C24⋊C5, S3×C24⋊C5
Quotients:
C1, C2, C5, S3, C10, C5×S3, C24⋊C5, C2×C24⋊C5, S3×C24⋊C5
Generators and relations
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f2=g5=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, gcg-1=cde, de=ed, df=fd, gdg-1=def, geg-1=ef=fe, gfg-1=c >
(1 11 9)(2 12 10)(3 13 6)(4 14 7)(5 15 8)(16 22 29)(17 23 30)(18 24 26)(19 25 27)(20 21 28)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 20)(7 16)(8 17)(9 18)(10 19)(11 24)(12 25)(13 21)(14 22)(15 23)
(3 28)(5 30)(6 21)(8 23)(13 20)(15 17)
(1 26)(2 27)(3 28)(4 29)(6 21)(7 22)(9 24)(10 25)(11 18)(12 19)(13 20)(14 16)
(1 26)(5 30)(8 23)(9 24)(11 18)(15 17)
(1 26)(4 29)(7 22)(9 24)(11 18)(14 16)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
G:=sub<Sym(30)| (1,11,9)(2,12,10)(3,13,6)(4,14,7)(5,15,8)(16,22,29)(17,23,30)(18,24,26)(19,25,27)(20,21,28), (1,26)(2,27)(3,28)(4,29)(5,30)(6,20)(7,16)(8,17)(9,18)(10,19)(11,24)(12,25)(13,21)(14,22)(15,23), (3,28)(5,30)(6,21)(8,23)(13,20)(15,17), (1,26)(2,27)(3,28)(4,29)(6,21)(7,22)(9,24)(10,25)(11,18)(12,19)(13,20)(14,16), (1,26)(5,30)(8,23)(9,24)(11,18)(15,17), (1,26)(4,29)(7,22)(9,24)(11,18)(14,16), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)>;
G:=Group( (1,11,9)(2,12,10)(3,13,6)(4,14,7)(5,15,8)(16,22,29)(17,23,30)(18,24,26)(19,25,27)(20,21,28), (1,26)(2,27)(3,28)(4,29)(5,30)(6,20)(7,16)(8,17)(9,18)(10,19)(11,24)(12,25)(13,21)(14,22)(15,23), (3,28)(5,30)(6,21)(8,23)(13,20)(15,17), (1,26)(2,27)(3,28)(4,29)(6,21)(7,22)(9,24)(10,25)(11,18)(12,19)(13,20)(14,16), (1,26)(5,30)(8,23)(9,24)(11,18)(15,17), (1,26)(4,29)(7,22)(9,24)(11,18)(14,16), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30) );
G=PermutationGroup([(1,11,9),(2,12,10),(3,13,6),(4,14,7),(5,15,8),(16,22,29),(17,23,30),(18,24,26),(19,25,27),(20,21,28)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,20),(7,16),(8,17),(9,18),(10,19),(11,24),(12,25),(13,21),(14,22),(15,23)], [(3,28),(5,30),(6,21),(8,23),(13,20),(15,17)], [(1,26),(2,27),(3,28),(4,29),(6,21),(7,22),(9,24),(10,25),(11,18),(12,19),(13,20),(14,16)], [(1,26),(5,30),(8,23),(9,24),(11,18),(15,17)], [(1,26),(4,29),(7,22),(9,24),(11,18),(14,16)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)])
G:=TransitiveGroup(30,111);
(1 11 9)(2 12 10)(3 13 6)(4 14 7)(5 15 8)(16 22 29)(17 23 30)(18 24 26)(19 25 27)(20 21 28)
(6 13)(7 14)(8 15)(9 11)(10 12)(16 22)(17 23)(18 24)(19 25)(20 21)
(3 28)(5 30)(6 21)(8 23)(13 20)(15 17)
(1 26)(2 27)(3 28)(4 29)(6 21)(7 22)(9 24)(10 25)(11 18)(12 19)(13 20)(14 16)
(1 26)(5 30)(8 23)(9 24)(11 18)(15 17)
(1 26)(4 29)(7 22)(9 24)(11 18)(14 16)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
G:=sub<Sym(30)| (1,11,9)(2,12,10)(3,13,6)(4,14,7)(5,15,8)(16,22,29)(17,23,30)(18,24,26)(19,25,27)(20,21,28), (6,13)(7,14)(8,15)(9,11)(10,12)(16,22)(17,23)(18,24)(19,25)(20,21), (3,28)(5,30)(6,21)(8,23)(13,20)(15,17), (1,26)(2,27)(3,28)(4,29)(6,21)(7,22)(9,24)(10,25)(11,18)(12,19)(13,20)(14,16), (1,26)(5,30)(8,23)(9,24)(11,18)(15,17), (1,26)(4,29)(7,22)(9,24)(11,18)(14,16), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)>;
G:=Group( (1,11,9)(2,12,10)(3,13,6)(4,14,7)(5,15,8)(16,22,29)(17,23,30)(18,24,26)(19,25,27)(20,21,28), (6,13)(7,14)(8,15)(9,11)(10,12)(16,22)(17,23)(18,24)(19,25)(20,21), (3,28)(5,30)(6,21)(8,23)(13,20)(15,17), (1,26)(2,27)(3,28)(4,29)(6,21)(7,22)(9,24)(10,25)(11,18)(12,19)(13,20)(14,16), (1,26)(5,30)(8,23)(9,24)(11,18)(15,17), (1,26)(4,29)(7,22)(9,24)(11,18)(14,16), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30) );
G=PermutationGroup([(1,11,9),(2,12,10),(3,13,6),(4,14,7),(5,15,8),(16,22,29),(17,23,30),(18,24,26),(19,25,27),(20,21,28)], [(6,13),(7,14),(8,15),(9,11),(10,12),(16,22),(17,23),(18,24),(19,25),(20,21)], [(3,28),(5,30),(6,21),(8,23),(13,20),(15,17)], [(1,26),(2,27),(3,28),(4,29),(6,21),(7,22),(9,24),(10,25),(11,18),(12,19),(13,20),(14,16)], [(1,26),(5,30),(8,23),(9,24),(11,18),(15,17)], [(1,26),(4,29),(7,22),(9,24),(11,18),(14,16)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)])
G:=TransitiveGroup(30,120);
Matrix representation ►G ⊆ GL7(𝔽31)
30 | 30 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | 30 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 0 | 19 | 1 | 0 | 0 |
0 | 0 | 19 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 30 | 0 | 0 |
0 | 0 | 0 | 19 | 0 | 30 | 0 |
0 | 0 | 0 | 30 | 0 | 0 | 30 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 1 | 19 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 1 | 0 |
0 | 0 | 19 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 30 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 1 | 0 |
0 | 0 | 19 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 30 | 12 | 29 | 0 | 0 |
0 | 0 | 0 | 0 | 19 | 1 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(7,GF(31))| [30,1,0,0,0,0,0,30,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,30,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,19,0,0,0,0,30,19,0,1,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,12,19,30,0,0,0,0,30,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,30],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,1,12,19,0,0,0,30,19,12,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,12,19,0,0,0,1,12,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,30,0,0,0,0,0,1,12,0,0,0,0,0,0,29,19,12,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;
Character table of S3×C24⋊C5
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 5A | 5B | 5C | 5D | 6A | 6B | 6C | 10A | 10B | 10C | 10D | 15A | 15B | 15C | 15D | |
size | 1 | 3 | 5 | 5 | 5 | 15 | 15 | 15 | 2 | 16 | 16 | 16 | 16 | 10 | 10 | 10 | 48 | 48 | 48 | 48 | 32 | 32 | 32 | 32 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ53 | ζ52 | ζ54 | ζ5 | linear of order 5 |
ρ4 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | 1 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | ζ54 | ζ5 | ζ52 | ζ53 | linear of order 10 |
ρ5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | 1 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | ζ53 | ζ52 | ζ54 | ζ5 | linear of order 10 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ52 | ζ53 | ζ5 | ζ54 | linear of order 5 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ54 | ζ5 | ζ52 | ζ53 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ5 | ζ54 | ζ53 | ζ52 | linear of order 5 |
ρ9 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | 1 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | ζ5 | ζ54 | ζ53 | ζ52 | linear of order 10 |
ρ10 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | 1 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | ζ52 | ζ53 | ζ5 | ζ54 | linear of order 10 |
ρ11 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | complex lifted from C5×S3 |
ρ13 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | complex lifted from C5×S3 |
ρ14 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | complex lifted from C5×S3 |
ρ15 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | complex lifted from C5×S3 |
ρ16 | 5 | -5 | 1 | 1 | -3 | -1 | 3 | -1 | 5 | 0 | 0 | 0 | 0 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ17 | 5 | -5 | 1 | -3 | 1 | 3 | -1 | -1 | 5 | 0 | 0 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ18 | 5 | -5 | -3 | 1 | 1 | -1 | -1 | 3 | 5 | 0 | 0 | 0 | 0 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ19 | 5 | 5 | -3 | 1 | 1 | 1 | 1 | -3 | 5 | 0 | 0 | 0 | 0 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ20 | 5 | 5 | 1 | -3 | 1 | -3 | 1 | 1 | 5 | 0 | 0 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ21 | 5 | 5 | 1 | 1 | -3 | 1 | -3 | 1 | 5 | 0 | 0 | 0 | 0 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ22 | 10 | 0 | -6 | 2 | 2 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 10 | 0 | 2 | -6 | 2 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 10 | 0 | 2 | 2 | -6 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
In GAP, Magma, Sage, TeX
S_3\times C_2^4\rtimes C_5
% in TeX
G:=Group("S3xC2^4:C5");
// GroupNames label
G:=SmallGroup(480,1196);
// by ID
G=gap.SmallGroup(480,1196);
# by ID
G:=PCGroup([7,-2,-5,-2,2,2,2,-3,324,850,2111,222,15686]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^2=g^5=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,g*c*g^-1=c*d*e,d*e=e*d,d*f=f*d,g*d*g^-1=d*e*f,g*e*g^-1=e*f=f*e,g*f*g^-1=c>;
// generators/relations